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Abstract 
 
In this work multiple linear regression (MLR) and artificial neural network (ANN) were 
used to predict the retention factors of 40 basic and neutral drugs in immobilized 
artificial membrane liquid chromatography. Two separate models were developed for 
prediction of solute retention in two mobile phase compositions which were used five 
identical descriptors. The standard errors in ANN calculation of   for training, internal 
and external test sets were 0.205, 0.3299 and 0.389, respectively, while these values are 
0.280, 0.426 and 0.448, respectively for MLR model. Also the standard errors in ANN 
prediction of   for training, internal and external test sets were 0.144, 0.596 and 0.557, 
respectively, while these values are 0.318, 0.613 and 0.453, respectively for MLR model. 
The validation and robustness of these ANN models were evaluated by cross-validation 
and Y-scrambling methods, which produce successful results. 
 
Key Words:Artificial neural network● Molecular descriptor● QSRR●Immobilized 
artificial membrane chromatography 

 
Introduction 
 

The development of immobilized artificial membrane (IAM) chromatography unfolded new 
perspectives in the application of HPLC for the rapid evaluation of drug partitioning into cell 
membranes [1–3]. IAMs are monolayers of phospholipid molecules covalently bonded to the surface of 
silica particles. The functional groups of the bonded phospholipids are considered to play an important 
role in retention especially if charged molecules are analyzed, while for small neutral compounds the 
intermolecular forces resemble those underlying partitioning in octanol/water and retention in reversed-
phase liquid chromatography [4, 5]. The pharmacokinetic behavior of drugs to access to their target sites 
are strongly dependent on the rate of their passive diffusion which was affected by the type and extent 
of their interactions with biological membranes. These behaviors can be accounted by solute retention in 
immobilized artificial membrane liquid chromatography {IAM-LC) [6, 7].  

 
Therefore the investigation of drug retention in IAM-LC is very important in study of drug 

delivery and activities predictions. The retention of solute in chromatography depends on the 
interactions of solute with mobile and stationary phases. The type and extent of these interactions 
depends on solute structure. Therefore it is possible to relate the solute retention to its structural 
parameters, as was done in quantitative structure-retention relationships (QSRR) investigation. The 
results of this study can use in the prediction of the retention for new compounds as well as in further 
understanding of solute retention mechanism and also in prediction of drugs activities. There are several 
reports about QSRR prediction of solute retention in IAM-LC [8–16].  
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Li et al. used partial least squares regression (PLSR) for QSRR prediction of retention indices of 
55 structurally diverse drugs in immobilized artificial membrane chromatography. The statistical 
parameters in prediction of logarithm of solute retention by their model were; regression coefficient of 

902.0R  and root mean square error ( RMSE) of 0.400 [17]. Also Luco et al. represented a 
quantitative structure-retention relationship model for prediction of the capacity factors of 32 
structurally diverse drugs in IAM-LC. They used kappa shape indices, the count of electron pairs on 
oxygen and nitrogen atoms, the count of O-H and N-H bonds, molar volume, molecular weight, total 
energy, heat of formation, energy of highest occupied molecular orbital, energy of lowest unoccupied 
molecular orbital, dipole moment, the most positive partial charge on a hydrogen atom and the most 
negative partial charge in the molecule as descriptors in their QSPR models [18]. Their orthogonal 
signal correction- partial least square model gives the statistics of 979.0R , standard error =0.09 and 
Fisher statistics of F =537. Other quantitative structure–retention relationships studies in IAM-LC were 
done by using linear solvation energy relationships (LSER) parameters by Valko et al. [19, 20]. 
Moreover, Li et al. have introduced an electronic descriptor into the amended LSER parameters to 
describe accurately the retention of ionized solutes on IAM chromatography. They have obtained a 
satisfactory regression coefficient of R = 0.948 for all studied solutes compared with that of the original 
LSER without considering the electronic factor ( R = 0.860) [21]. 

 
The main aim of the present work was to development of a quantitative structure retention 

relationships model using linear and non-linear techniques in modeling of retention factors of 40 
structurally diverse neutral and basic drugs in immobilized artificial membrane chromatography. It is 
obvious that such model not only can used to predict the retention factor and biological activities of 
other drugs, but also can clarify the retention mechanism of solute in IAMC. 

 
Experimental 
 
Data Set 
 

The data set of retention factor in IAM-LC was taken from the values reported by Vrakas et al. 
[22] which is shown in Table1. The data set consists of the logarithm of retention factors of 40 basic and 
neutral drugs in two mobile phase compositions. Separation of these compounds were performed using 
0.02M morpholinepropanesulfonic acid (MOPS) and also in 0.01M phosphate buffer saline (PBS) at pH 
7.4 as the aqueous mobile phases and IAM.PC.DD2 stationary phase(the IAM.PC.DD2 column was 
filled with phosphatidylcholine (PC) residues covalently bonded to silica(Regis Technologies, Morton 
Grove, IL, USA)). Therefore two separate QSPR models were developed to investigate the retention of 
solutes in each mobile phase compositions. In each case the data set were sorted according to the solute 
retention factor and the training, internal and external test sets were chosen from this list with desired 
distance from each other. The training set was used to adjust the parameters of model, the internal test 
set was used to prevent the over fitting of model and the external test set was used to evaluate the 
prediction power of the constructed models. 
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Table 1 Data Set and Corresponding Observed and ANN and MLR Predicted Values of the IAMklog  
 

   IAM
MOPSklog     IAM

PBSklog   

number Name  Exp MLR ANN  Exp MLR ANN 
1 Acyclovir −0.62  0.80 - 0.01  −1.15  -0.73 0.00 
2 Haloperidol   3.57 3.89 3.54    2.65 3.37 2.68 
3 Amitriptyline   3.46 3.67 3.67    2.99 2.96 2.72 
4 Amlodipine   3.50 3.19 3.56    2.79 2.79 2.79 
5 Atenolol   0.87 ext 0.97 0.10    0.51 0.76 0.51 
6 Verapamil   3.40 3.65 3.41    2.76 1.33 2.76 
7 Bromazepam   1.62 1.77 1.62    1.44 1.40 1.44 
8 Diazepam   2.21 2.54 2.20  2.12 2.22 2.12 
9 Dimethidene   3.26 3.19 3.25    2.62 2.60 2.63 
10 Dipyridamol   3.23 2.86 3.23    3.21 2.44 3.21 
11 Doxepine   3.37 int 3.55 3.75  2.50 2.84 2.78 
12 Theophylline   0.06 0.12 - 0.01  −0.08  -0.27 0.01 
13 Imipramine   3.52 3.52 3.74    2.73 2.81 2.81 
14 Clomipramine   4.05 3.99 3.97    3.29 3.39 3.33 
15 Clopamide   1.18 1.59 1.20    0.97 int 1.15 0.97 
16 Lidocaine   1.58 1.71 1.58    1.27 1.32 1.27 
17 Lorazepam   2.27 1.94 2.28    2.03 1.97 2.03 
18 Maprotiline   3.89 3.63 3.65    2.81 2.92 2.77 
19 Metformine   0.19 0.71 0.20  −0.37 int 0.52 0.13 
20 Midazolam   2.90 3.15 2.93    2.77 2.75 2.77 
21 Nifedipine   1.55 1.94 1.56    1.66 1.58 1.66 
22 Nortriptyline   3.78 ext 3.51 3.74    2.83 2.81 2.82 
23 Norfluoxetine   4.10 int 3.18 3.74    3.04 2.48 3.02 
24 Oxprenolol   2.15 ext 2.79 2.79    1.47 int 2.16 2.13 
25 Paracetamol   0.25 0.57 0.25    0.18 0.29 0.18 
26 Pindolol   2.10 2.39 2.09    1.47 ext 1.84 1.24 
27 Piracetam −0.70 int 0.04 - 0.02  - - - 
28 Prazepam   2.94 int 2.63 3.77    2.62 int 2.37 3.21 
29 Promethazine   3.63 3.25 3.76    2.78 ext 2.56 3.02 
30 Propranolol   2.95 2.91 2.96    2.33 2.28 2.33 
31 Protriptyline   3.69 3.51 3.73    2.79 2.81 2.83 
32 Pyrimethamine   2.38 2.10 2.36    1.87 1.79 1.87 
33 Temazepam   1.96 1.69 1.93    1.76 1.58 1.72 
34 Tioconazole   3.65 3.69 3.63    3.86 ext 3.56 3.33 
35 Trimethoprim   1.51 1.45 1.50    1.05 1.13 1.05 
36 Hydroxyzine   3.33 3.99 3.34    3.01 ext 3.44 2.76 
37 Fluoxetine   4.08 3.39 3.77    2.98 2.69 2.90 
38 Chlordiazepoxide   1.93 1.68 1.93    1.86 1.58 1.85 
39 Chlorthalidone   1.49 1.30 1.48    1.37 1.22 1.40 
40 Chlorpromazine  3.55 ext 3.72 4.03    3.33 3.14 3.33 

 

 ** In the above table int refer to internal test set and ext refer to external test set 
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Descriptors 
 

To obtain a reliable QSRR model, the structural feature of molecules should be encoded by the 
molecular descriptors. In the first step the structures of compounds were drawn with Hyperchem 
(version 7.0) program [23] and exported in a file format suitable for Mopac (version 6.0) package [24], 
on the basis of the minimum energy molecular geometries optimized by 1AM  semi empirical method. 
Then the Hyperchem and MOPAC output files were transferred into software CODESSA. This software 
can calculate constitutional, topological, geometrical, electrostatic, and quantum chemical descriptors 
and has been successfully used by various QSPR researches [25-31]. Constitutional descriptors are 
related to the number of atoms and bonds in each molecule. The topological descriptors describe the 
atomic connectivity in the molecule. The geometrical descriptors describe the size of the molecule. The 
electrostatic descriptors reflect characteristics of the charge distribution of the molecule. The quantum 
chemical descriptors offer information about binding and formation energies, partial atom charge, dipole 
moment, and molecular orbital energy levels. Some descriptors generated for each compound, encoded 
similar information about the molecule of interest, therefore, it was desirable to test each pair of 
descriptor and eliminate those that show high correlation (R>0.90) with each other. Subsequently, the 
method of stepwise multiple linear regression was performed on the training set to select the most 
relevant descriptors. Two separate QSRR models were developed to predict the retention of solute in 
two different mobile phase composition. These two MLR-QSRR models have identical descriptors but 
with different coefficients. The names of descriptors and the statistical parameters of constructed MLR 
models are shown in Table 2. These descriptors were used as inputs for the generated artificial neural 
networks. 

 
Neural Network Generation 
 

An ANN is a biologically inspired computer program designed to learn from data in a manner 
of emulating the learning pattern in the brain. Most ANN systems are very complex and high-dimension 
processing systems. Training of the ANN can be performed using the back-propagation algorithm. In 
order to train the network using the back-propagation algorithm, the differences between the ANN 
output and its desired value are calculated after each training iteration and the values of weights and 
biases modified using this error term. A detailed description of the theory behind a neural network has 
been adequately described elsewhere [32-34]. The program for the feed-forward neural network that 
was trained by the back-propagation algorithm was written in MATLAB 7.4. Descriptors that appeared 
in the selected MLR model were used as inputs for the generated ANN, and its output was the retention 
factor for the molecule of interest. Therefore this network has five nodes in the input layer and one node 
in the output layer. The number of nodes in the hidden layer would be optimized. The initial weights 
were randomly selected from a uniform distribution that ranged between-0.3 and 0.3. The initial bias 
values were set to be one. These values were optimized during the network training. The value of each 
input was divided into its mean value to bring them into the dynamic range of the sigmoid transfer 
function of the ANN. Before training, the network was optimized for the number of nodes in the hidden 
layer, learning rates, and momentum. Then, the network was trained using the training set to optimize 
the values of weights and biases. Finally in order to evaluate the prediction power of the ANN, a trained 
network was employed to calculate the retention factor for the external test set. 

 
Result and Discussion 
 
Linear Modeling 
 

Two separate MLR models were constructed for QSRR modeling of IAM retention factors 
IAM
wPBSklog  and IAM

wMOPSklog  of selected drugs in different mobile phase compositions. Table 2 represented 
the specifications of these models.  
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These MLR models have the statistical parameters of 967.0R , 280.0SE  and 
785.420F and 970.0R , 318.0SE  and 033.475F  for modeling of IAM

wPBSklog  and 
IAM
wMOPSklog , respectively. It can be seen from this table that five identical descriptors were appeared in 

these two models. These descriptors are: number of C atoms ( nC ), fractional hydrogen bonding 
acceptor ability of the molecule ( FHASA), min (>0.1) bond order of N atom ( min

NP ), number of 

chlorine atoms ( nCL ) and average bond order of N atom ( N ). The chemical meaning and the way of 
calculations of these descriptors were explained in the book of Molecular Descriptors by Todeschini et 
al. [35]. The correlations between these descriptors were calculated and are shown in Table 3. By 
inspection to these values, it was concluded that there is no significant correlation between selected 
descriptors. The calculated values of retention factors by these MLR equations were shown in Table 1.  

 
Table2 Specifications of Multiple Linear Regression Models 

 
 IAM

wMOPSklog  
   IAM

wPBSklog  
    

Mean 
Effect 

Standard 
error 

coefficient  Mean 
effect 

Standard 
error 

coefficient  Notation Descriptors   

0.816 ±0.021 0.120  0.932 ±0.020 0.116   Number of C atoms 
0.098 ±0.088 0.477  0.109 ±0.103 0.585  nCl  Number of chlorine atoms 
-
0.190 

±.0.884 -4.463  -
0.155 

±0.787 -3.396  FHASA Fractional H-bonding 
acceptor ability of the 
molecule 

0.459 ±0.257 1.653  0.417 ±0.235 1.243  min
NP  

Min (>0.1) bond order of 
N atom 

-
1.126 

±0.574 -2.696  -
0.970 

±0.535 -1.988  N  
Average bond order  
of N atoms 

 ±0.582 2.309   ±0.507 1.376   Constant 
 

Table3 the Correlation Matrix between Selected Descriptor 
 

 nC  nCl  FHASA min
NP  N  

nC  1 -0.718 -0.726 0.424 -0.037 
nCl   1 0.416 -0.071 0.041 

FHASA   1 -0.368 0.040 
min

NP     1 0.010 

N      1 
 

Non-linear modeling 
 

The selected descriptors can be used as inputs for generation of ANN models. The first step in 
the generation of a neural network was the optimization of its parameters. These parameters are; the 
number of nodes in the hidden layer, weights and biases learning rates and the momentum values. The 
procedure for optimization of these parameters is given in our previous works [36, 37]. Table 4 shows 
the architecture and specification of the optimized ANN models. Then the network was trained by using 
the training sets for the optimization of the weights and biases values by back propagation algorithm. 

 

nC
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 It is known that neural network can become over-trained. An over-trained network has usually 
learned perfectly the stimulus pattern it has seen but can not give accurate prediction for unseen stimuli, 
and it no longer able to generalize. There are several methods for overcoming this problem. One method 
is to use an internal test set to evaluate the prediction power of the network during its training. In this 
method after each 1000 training iteration the network was used to calculate retention factor of molecules 
included in the internal test set. To maintain the predictive power of the network at a desirable level, 
training was stopped when the value of errors for the internal test set started to increase. Since this error 
is not a good estimate of the generalization error, prediction potential of the model was evaluated on a 
third set of data, named external test set. Compounds in the external test set were not used during the 
training process and were reserved to evaluate the predictive power of the generated ANN. 
 

Table 4 Architecture and Specification of the Generated ANNs 
 

 IAM
wMOPSklog  IAM

wPBSklog  

No. of nodes in the input layer 5 5 
No. of nodes in the hidden layer 4 4 
No. of nodes in the output layer 1 1 

Weights learning rate 0.3 0.4 
Bias learning rate 0.5 0.6 

Momentum 0.5 0.5 
Transfer function Sigmoid Sigmoid 

 
Table5 The Statistical Parameters Obtained Using the MLR And ANN Models in Prediction of

IAM
wPBSklog . 

 
 MLR 

model 
   ANN 

model 
   

SE F R  SE F R    
0.280 420.785 0.967  0.205 810.887 0.983  Training  
0.426 23.330 0.960  0.329 40.559 0.976  Internal  
0.448 12.595 0.929  0.389 17.320 0.947  External  


2

validationcrossR 0.914 

RMSE 0.332 
2Q 0.911  

 
2

validationcrossR 0.946 

RMSE 0.276 
2Q 0.938 

  

 
Model validation 

 
For the evaluation of the prediction power of thenetwork, the trained ANN was used to predict 

theretention factors of the molecules included inprediction set. Table 1 represents the experimental and 
predicted values of retention factorsusing the generated ANN for the training, internal and external test 
sets. The statistical parameters obtained in calculation of IAM

wPBSklog  and IAM
wMOPSklog  by the ANN and 

MLR models are shown in Table 5 and Table 6. It can be seen from these tables that although 
descriptors appearing in the MLR models are used as inputs for the ANNs, the statistics of the latter 
show a large improvement.  
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The residuals of the ANN calculated values of the retention factors are plotted against their 
experimental values in Fig. 1. The propagation of the residuals in both sides of zero line indicates that 
no systematic error exists in the constructed QSPR model. 

 

 The leave many-out cross-validation method was used for the evaluation the prediction power 
of the obtained MLR and ANN models. The obtained statistical results of leave-five-out cross validation 
test is 929.02 Q  and 949.02 Q  for MLR and ANN model, respectively in prediction of 

IAM
wMOPSklog  and  911.02 Q and 938.02 Q  for MLR and ANN models, respectively in prediction of 
IAM
wPBSklog . Another widely used approach to establish the model robustness is so called y-randomization 

test (randomization of response, i.e. in our case, retention) [38]. It consists of repeating the calculation 
procedure with randomized retention vector and subsequent probability assessment of the resultant 
statistics. It is expected that models obtained for the dataset with randomized retention should have low 
values of 2R . However, sometimes models based on the randomized data have high 2R values due to 
chance correlation or structural redundancy [39]. The results of 30 times repetitions in randomization of 
Y vectors (retention factors) on MLR models were shown in Table 7. As can be seen from this table the 
random models were found to have significantly lower 2R values ( 129.02 R  and 165.02 R  in 
prediction of IAM

wPBSklog and IAM
wMOPSklog , respectively) than the original model, which indicate that the 

good results in our original models are not due to the chance or structural dependency of the training set.  
 

Table6 The Statistical Parameters Obtained Using The MLR and ANN Models in Prediction of
IAM
wMOPSklog . 

 

 MLR    ANN    
SE F R  SE F R   

0.318 475.033 0.970  0.144 2438.826 0.994  Training  

0.613 34.523 0.970  0.596 36.590 0.974  Internal  

0.453 24.705 0.962  0.557 15.699 0.942  External  


2

validationcrossR 0.931 

RMSE 0.351 

2Q 0.929 

 
 
 
 


2

validationcrossR 0.951 

RMSE 0.300 

2Q 0.949 

  

 

Table7the results of Y-randomization test for IAM
wPBSklog and IAM

wMOPSklog  for MLR models 
 

 IAM
wPBSklog  

IAM
wMOPSklog  

  IAM
wPBSklog  IAM

wMOPSklog  

Number 2R  
2R  

 Number 2R  
2R  

1 0.203 0.131  16 0.077 0.149 
2 0.051 0.257  17 0.052 0.306 
3 0.193 0.070  18 0.220 0.175 
4 0.146 0.082  19 0.077 0.048 
5 0.154 0.212  20 0.203 0.016 
6 0.118 0.067  21 0.120 0.200 
7 0.028 0.326  22 0.043 0.142 
8 0.107 0.363  23 0.090 0.193 
9 0.295 0.230  24 0.191 0.187 
10 0.135 0.109  25 0.075 0.227 
11 0.084 0.078  26 0.080 0.157 
12 0.173 0.128  27 0.126 0.049 
13 0.024 0.265  28 0.099 0.328 
14 0.243 0.050  29 0.289 0.180 
15 0.092 0.076  30 0.181 0.130 
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Fig. 1 Plot Of Residual Versus Experimental Values of Retention Factor For IAM
PBSklog

(A)and IAM
MOPSklog (b). 

 
 
Descriptor Interpretation 
 

In order to obtain the relative importance and contribution of each descriptor in the models we 
calculated the values of mean effect (ME) for each descriptor from the following Eq. (1). 

 
 

(1) 
 

 
 

WhereMEjis the mean effect for considered descriptor j, j  is the coefficient of descriptor j in 
MLR equation and dij is the value of descriptor j for molecule i, and m is the number of descriptors in 
the model. The value of ME revealed the relative importance of a descriptor in comparison with other 
descriptors. The sign of mean effect showed the direction of influencing of descriptors on the value of 
retention factor. The calculated values of mean effects are indicated in the last column of Table 2 and 
also are shown in Fig. 2. Inspection to these values reveals that the order of importance of descriptors in 
two models is identical and is N > nC > MIN

NP > FHASA> nCL .  
Most important descriptor with the highest mean effect is average bond order of N atoms. This 

descriptor can represent the electronic structure of molecules and can affect on the extent of electrostatic 
interactions between solute and mobile and stationary phases. 
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The second important descriptor according to its mean effect is number of C atoms. As the 
number of carbons in a molecule increases the hydrophobicity of molecule increases, therefore their 
retention increases. The next descriptor is min (>0.1) bond order of N atoms which is a quantum 
chemical descriptor. This descriptor relate to the strength of intramolecular bonding interactions and 
characterize the stability of the molecules. The positive sign for the mean effect of this descriptor 
indicates that an increasing in the value of this descriptor causes an increasing in retention factor.  The 
forth descriptor in the model is fractional hydrogen bonding acceptor ability of the molecule ( FHASA). 
This descriptor defines as below: 

 

TMSA
HASAFHASA 1

                                                                (2) 

where 1HASA is the hydrogen bonding acceptor ability, and TMSA  is the total molecular 
surface area. When the FHASA increases, the hydrophilicity of molecules increase and its retention was 
decreases. The last descriptor in the model is the number of Cl atoms. By increasing this value the size 
and molecular weight of solute increases. All of these descriptors can encode different aspects of solute 
which affected on hydrophobic and steric and electrostatic interactions which control the solute 
retention in liquid chromatography. 

 

 
 

Fig. 2 Plot of Mean Effect Values versus Descriptors 
 
 
Conclusions 
 

Results of this study reveal that MLR and ANN can be used successfully in developing of a 
QSRR model to predict the solute retention factors in IAMC, in different aqueous mobile phases 
compositions. Descriptors that were appeared in the models are constitutional and quantum chemical 
types which can encode features of molecules that are responsible in steric, and lipophilicity interactions 
of molecules. The statistical parameters of ANN model are few better than MLR one, which illuminate 
that there are some non-linear relations between molecular descriptors and solute retention in IAM-LC. 
The validation and robustness of these ANN models were evaluated by cross-validation and Y-
scrambling methods, which produce successful results. 
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